

 Navigation

 	
 index

 	
 next |

 	Failure documentation

Welcome to Failure’s documentation!

A python package [https://pypi.python.org/pypi/fasteners] that provides useful exception (aka failure) additions.

Contents:

	Classes

	Helper functions

	Examples

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Tue Jan 17 02:28:50 2017, commit 9ea9a46'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Failure documentation

Classes

	
class failure.Failure(exc_info=None, exc_args=None, exc_kwargs=None, exception_str='', exc_type_names=None, cause=None, traceback_str='', generated_on=None)[source]

	Bases: failure._utils.StrMixin

An immutable object that represents failure.

Failure objects encapsulate exception information so that they can be
re-used later to re-raise, inspect, examine, log, print, serialize,
deserialize...

For those who are curious, here are a few reasons why the original
exception itself may not be reraised and instead a reraised wrapped
failure exception object will be instead. These explanations are only
applicable when a failure object is serialized and deserialized (when it is
retained inside the python process that the exception was created in the
the original exception can be reraised correctly without issue).

	Traceback objects are not serializable/recreatable, since they contain
references to stack frames at the location where the exception was
raised. When a failure object is serialized and sent across a channel
and recreated it is not possible to restore the original traceback and
originating stack frames.

	The original exception type can not always be guaranteed to be
found, certain nodes can run code that is not accessible/available
when the failure is being deserialized. Even if it was possible to use
pickle safely (which it is not) it would not always
be possible to find the originating exception or associated code in this
situation.

	The original exception type can not be guaranteed to be constructed in
a correct manner. At the time of failure object creation the exception
has already been created and the failure object can not assume it has
knowledge (or the ability) to recreate the original type of the captured
exception (this is especially hard if the original exception was created
via a complex process via some custom exception __init__ method).

	The original exception type can not always be guaranteed to be
constructed and/or imported in a safe manner. Importing foreign
exception types dynamically can be problematic when not done
correctly and in a safe manner; since failure objects can
capture any exception it would be unsafe to try to import
those exception types namespaces and modules on the receiver side
dynamically (this would create similar issues as the pickle module
has).

TODO(harlowja): use parts of http://bugs.python.org/issue17911 and the
backport at https://pypi.python.org/pypi/traceback2/ to (hopefully)
simplify the methods and contents of this object...

	
BASE_EXCEPTIONS = {2: ('exceptions.BaseException', 'exceptions.Exception'), 3: ('builtins.BaseException', 'builtins.Exception')}

	Root exceptions of all other python exceptions (as a string).

See: https://docs.python.org/2/library/exceptions.html

	
SCHEMA = {'definitions': {'cause': {'additionalProperties': True, 'required': ['exception_str', 'traceback_str', 'exc_type_names', 'generated_on'], 'type': 'object', 'properties': {'exc_kwargs': {'additionalProperties': True, 'type': 'object'}, 'traceback_str': {'type': 'string'}, 'generated_on': {'minItems': 1, 'items': {'type': 'number'}, 'type': 'array'}, 'exc_args': {'minItems': 0, 'type': 'array'}, 'exception_str': {'type': 'string'}, 'cause': {'type': 'object', '$ref': '#/definitions/cause'}, 'exc_type_names': {'minItems': 1, 'items': {'type': 'string'}, 'type': 'array'}}}}, '$ref': '#/definitions/cause'}

	Expected failure schema (in json schema format).

	
classmethod from_exc_info(exc_info=None, retain_exc_info=True, cause=None, find_cause=True)[source]

	Creates a failure object from a sys.exc_info() tuple.

	
classmethod from_exception(exception, retain_exc_info=True, cause=None, find_cause=True)[source]

	Creates a failure object from a exception instance.

	
classmethod validate(data)[source]

	Validate input data matches expected failure dict format.

	
matches(other)[source]

	Checks if another object is equivalent to this object.

	Returns:	checks if another object is equivalent to this object

	Return type:	boolean

	
exception

	Exception value, or None if exception value is not present.

Exception value may be lost during serialization.

	
generated_on

	Python major & minor version tuple this failure was generated on.

May be None if not provided during creation (or after if lost).

	
exception_str

	String representation of exception.

	
exception_args

	Tuple of arguments given to the exception constructor.

	
exception_kwargs

	Dict of keyword arguments given to the exception constructor.

	
exception_type_names

	Tuple of current exception type names (in MRO order).

	
exc_info

	Exception info tuple or None.

	See: https://docs.python.org/2/library/sys.html#sys.exc_info for what

	the contents of this tuple are (if none, then no contents can
be examined).

	
traceback_str

	Exception traceback as string.

	
static reraise_if_any(failures, cause_cls_finder=None)[source]

	Re-raise exceptions if argument is not empty.

If argument is empty list/tuple/iterator, this method returns
None. If argument is converted into a list with a
single Failure object in it, that failure is reraised. Else, a
WrappedFailure exception is raised with the failure
list as causes.

	
reraise(cause_cls_finder=None)[source]

	Re-raise captured exception (possibly trying to recreate).

	
check(*exc_classes)[source]

	Check if any of exc_classes caused the failure.

Arguments of this method can be exception types or type
names (strings fully qualified). If captured exception is
an instance of exception of given type, the corresponding argument
is returned, otherwise None is returned.

	
cause

	Nested failure cause of this failure.

This property is typically only useful on 3.x or newer versions
of python as older versions do not have associated causes.

Refer to PEP 3134 [https://www.python.org/dev/peps/pep-3134] and PEP 409 [https://www.python.org/dev/peps/pep-0409] and PEP 415 [https://www.python.org/dev/peps/pep-0415] for what
this is examining to find failure causes.

	
pformat(traceback=False)[source]

	Pretty formats the failure object into a string.

	
iter_causes()[source]

	Iterate over all causes.

	
classmethod from_dict(data)[source]

	Converts this from a dictionary to a object.

	
to_dict(include_args=True, include_kwargs=True)[source]

	Converts this object to a dictionary.

	Parameters:	
	include_args – boolean indicating whether to include the
exception args in the output.

	include_kwargs – boolean indicating whether to include the
exception kwargs in the output.

	
copy(deep=False)[source]

	Copies this object (shallow or deep).

	Parameters:	deep – boolean indicating whether to do a deep copy (or a
shallow copy).

Helper functions

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Tue Jan 17 02:28:50 2017, commit 9ea9a46'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Failure documentation

Examples

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Tue Jan 17 02:28:50 2017, commit 9ea9a46'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Failure documentation

Index

 B
 | C
 | E
 | F
 | G
 | I
 | M
 | P
 | R
 | S
 | T
 | V

B

 	

 	BASE_EXCEPTIONS (failure.Failure attribute)

C

 	

 	cause (failure.Failure attribute)

 	check() (failure.Failure method)

 	

 	copy() (failure.Failure method)

E

 	

 	exc_info (failure.Failure attribute)

 	exception (failure.Failure attribute)

 	exception_args (failure.Failure attribute)

 	

 	exception_kwargs (failure.Failure attribute)

 	exception_str (failure.Failure attribute)

 	exception_type_names (failure.Failure attribute)

F

 	

 	Failure (class in failure)

 	from_dict() (failure.Failure class method)

 	

 	from_exc_info() (failure.Failure class method)

 	from_exception() (failure.Failure class method)

G

 	

 	generated_on (failure.Failure attribute)

I

 	

 	iter_causes() (failure.Failure method)

M

 	

 	matches() (failure.Failure method)

P

 	

 	pformat() (failure.Failure method)

 	

 	
 Python Enhancement Proposals

 	

 	PEP 3134

 	PEP 409

 	PEP 415

R

 	

 	reraise() (failure.Failure method)

 	

 	reraise_if_any() (failure.Failure static method)

S

 	

 	SCHEMA (failure.Failure attribute)

T

 	

 	to_dict() (failure.Failure method)

 	

 	traceback_str (failure.Failure attribute)

V

 	

 	validate() (failure.Failure class method)

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Tue Jan 17 02:28:50 2017, commit 9ea9a46'.
 Created using Sphinx 1.3.5.

 _modules/failure/failure.html

 Navigation

 		
 index

 		Failure documentation »

 		Module code »

 Source code for failure.failure

-*- coding: utf-8 -*-

Copyright (C) 2014 Yahoo! Inc. All Rights Reserved.
Copyright (C) 2016 GoDaddy Inc. All Rights Reserved.
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

from __future__ import absolute_import

import collections
import copy
import itertools
import os
import sys
import traceback

import jsonschema
from oslo_utils import reflection
import six

from failure import _utils as utils

class InvalidFormat(ValueError):
 """Exception raised when data is not in the right format."""

class NoActiveException(RuntimeError):
 """Exception raised when no current exception/exc_info() exists."""

class WrappedFailure(utils.StrMixin, Exception):
 """Wraps one or several failure objects.

 When exception/s cannot be re-raised (for example, because the value and
 traceback are lost in serialization) or there are several exceptions active
 at the same time (due to more than one thread raising exceptions), we will
 wrap the corresponding failure objects into this exception class and
 may reraise this exception type to allow users to handle the contained
 failures/causes as they see fit...

 See the failure class documentation for a more comprehensive set of reasons
 why this object *may* be reraised instead of the original exception.

 :param causes: the :py:class:`~failure.Failure` objects
 that caused this this exception to be raised.
 """

 def __init__(self, causes):
 super(WrappedFailure, self).__init__()
 self._causes = []
 for cause in causes:
 if cause.check(type(self)) and cause.exception is not None:
 # NOTE(imelnikov): flatten wrapped failures.
 self._causes.extend(cause.exception)
 else:
 self._causes.append(cause)

 def __iter__(self):
 """Iterate over failures that caused the exception."""
 return iter(self._causes)

 def __len__(self):
 """Return number of wrapped failures."""
 return len(self._causes)

 def check(self, *exc_classes):
 """Check if any of exception classes caused the failure/s.

 :param exc_classes: exception types/exception type names to
 search for.

 If any of the contained failures were caused by an exception of a
 given type, the corresponding argument that matched is returned. If
 not then ``None`` is returned.
 """
 if not exc_classes:
 return None
 for cause in self:
 result = cause.check(*exc_classes)
 if result is not None:
 return result
 return None

 def __bytes__(self):
 buf = six.BytesIO()
 buf.write(b'WrappedFailure: [')
 causes_gen = (six.binary_type(cause) for cause in self._causes)
 buf.write(b", ".join(causes_gen))
 buf.write(b']')
 return buf.getvalue()

 def __unicode__(self):
 buf = six.StringIO()
 buf.write(u'WrappedFailure: [')
 causes_gen = (six.text_type(cause) for cause in self._causes)
 buf.write(u", ".join(causes_gen))
 buf.write(u']')
 return buf.getvalue()

[docs]class Failure(utils.StrMixin):
 """An immutable object that represents failure.

 Failure objects encapsulate exception information so that they can be
 re-used later to re-raise, inspect, examine, log, print, serialize,
 deserialize...

 For those who are curious, here are a few reasons why the original
 exception itself *may* not be reraised and instead a reraised wrapped
 failure exception object will be instead. These explanations are *only*
 applicable when a failure object is serialized and deserialized (when it is
 retained inside the python process that the exception was created in the
 the original exception can be reraised correctly without issue).

 * Traceback objects are not serializable/recreatable, since they contain
 references to stack frames at the location where the exception was
 raised. When a failure object is serialized and sent across a channel
 and recreated it is *not* possible to restore the original traceback and
 originating stack frames.
 * The original exception *type* can not *always* be guaranteed to be
 found, certain nodes can run code that is not accessible/available
 when the failure is being deserialized. Even if it was possible to use
 pickle safely (which it is not) it would not *always*
 be possible to find the originating exception or associated code in this
 situation.
 * The original exception *type* can not be guaranteed to be constructed in
 a *correct* manner. At the time of failure object creation the exception
 has already been created and the failure object can not assume it has
 knowledge (or the ability) to recreate the original type of the captured
 exception (this is especially hard if the original exception was created
 via a complex process via some custom exception ``__init__`` method).
 * The original exception *type* can not *always* be guaranteed to be
 constructed and/or imported in a *safe* manner. Importing *foreign*
 exception types dynamically can be problematic when not done
 correctly and in a safe manner; since failure objects can
 capture *any* exception it would be *unsafe* to try to import
 those exception types namespaces and modules on the receiver side
 dynamically (this would create similar issues as the ``pickle`` module
 has).

 TODO(harlowja): use parts of http://bugs.python.org/issue17911 and the
 backport at https://pypi.python.org/pypi/traceback2/ to (hopefully)
 simplify the methods and contents of this object...
 """

 BASE_EXCEPTIONS = {
 # py2.x old/legacy names...
 2: ('exceptions.BaseException', 'exceptions.Exception'),
 # py3.x new names...
 3: ('builtins.BaseException', 'builtins.Exception'),
 }
 """
 Root exceptions of all other python exceptions (as a string).

 See: https://docs.python.org/2/library/exceptions.html
 """

 #: Expected failure schema (in json schema format).
 SCHEMA = {
 "$ref": "#/definitions/cause",
 "definitions": {
 "cause": {
 "type": "object",
 'properties': {
 'exc_args': {
 "type": "array",
 "minItems": 0,
 },
 'exc_kwargs': {
 "type": "object",
 "additionalProperties": True,
 },
 'exception_str': {
 "type": "string",
 },
 'traceback_str': {
 "type": "string",
 },
 'exc_type_names': {
 "type": "array",
 "items": {
 "type": "string",
 },
 "minItems": 1,
 },
 'generated_on': {
 "type": "array",
 "items": {
 "type": "number",
 },
 "minItems": 1,
 },
 'cause': {
 "type": "object",
 "$ref": "#/definitions/cause",
 },
 },
 "required": [
 "exception_str",
 'traceback_str',
 'exc_type_names',
 'generated_on',
],
 "additionalProperties": True,
 },
 },
 }

 def __init__(self, exc_info=None, exc_args=None,
 exc_kwargs=None, exception_str='',
 exc_type_names=None, cause=None,
 traceback_str='', generated_on=None):
 exc_type_names = utils.to_tuple(exc_type_names)
 if not exc_type_names:
 raise ValueError("Invalid exception type (no type names"
 " provided)")
 self._exc_type_names = exc_type_names
 self._exc_info = utils.to_tuple(exc_info, on_none=None)
 self._exc_args = utils.to_tuple(exc_args)
 if exc_kwargs:
 self._exc_kwargs = dict(exc_kwargs)
 else:
 self._exc_kwargs = {}
 self._exception_str = exception_str
 self._cause = cause
 self._traceback_str = traceback_str
 self._generated_on = utils.to_tuple(generated_on, on_none=None)

 @classmethod
[docs] def from_exc_info(cls, exc_info=None,
 retain_exc_info=True,
 cause=None, find_cause=True):
 """Creates a failure object from a ``sys.exc_info()`` tuple."""
 if exc_info is None:
 exc_info = sys.exc_info()
 if not any(exc_info):
 raise NoActiveException("No exception currently"
 " being handled")
 # This should always be the (type, value, traceback) tuple,
 # either from a prior sys.exc_info() call or from some other
 # creation...
 if len(exc_info) != 3:
 raise ValueError("Provided 'exc_info' must contain three"
 " elements")
 exc_type, exc_val, exc_tb = exc_info
 try:
 if exc_type is None or exc_val is None:
 raise ValueError("Invalid exception tuple (exception"
 " type and exception value must"
 " be provided)")
 exc_args = tuple(getattr(exc_val, 'args', []))
 exc_kwargs = dict(getattr(exc_val, 'kwargs', {}))
 exc_type_names = utils.extract_roots(exc_type)
 if not exc_type_names:
 exc_type_name = reflection.get_class_name(
 exc_val, truncate_builtins=False)
 # This should only be possible if the exception provided
 # was not really an exception...
 raise TypeError("Invalid exception type '%s' (not an"
 " exception)" % (exc_type_name))
 exception_str = utils.exception_message(exc_val)
 if hasattr(exc_val, '__traceback_str__'):
 traceback_str = exc_val.__traceback_str__
 else:
 if exc_tb is not None:
 traceback_str = '\n'.join(
 traceback.format_exception(*exc_info))
 else:
 traceback_str = ''
 if not retain_exc_info:
 exc_info = None
 if find_cause and cause is None:
 cause = cls._extract_cause(exc_val)
 return cls(exc_info=exc_info, exc_args=exc_args,
 exc_kwargs=exc_kwargs, exception_str=exception_str,
 exc_type_names=exc_type_names, cause=cause,
 traceback_str=traceback_str,
 generated_on=sys.version_info[0:2])
 finally:
 del exc_type, exc_val, exc_tb

 @classmethod
[docs] def from_exception(cls, exception, retain_exc_info=True,
 cause=None, find_cause=True):
 """Creates a failure object from a exception instance."""
 exc_info = (
 type(exception),
 exception,
 getattr(exception, '__traceback__', None)
)
 return cls.from_exc_info(exc_info=exc_info,
 retain_exc_info=retain_exc_info,
 cause=cause, find_cause=find_cause)

 @classmethod
[docs] def validate(cls, data):
 """Validate input data matches expected failure ``dict`` format."""
 try:
 jsonschema.validate(
 data, cls.SCHEMA,
 # See: https://github.com/Julian/jsonschema/issues/148
 types={'array': (list, tuple)})
 except jsonschema.ValidationError as e:
 raise InvalidFormat("Failure data not of the"
 " expected format: %s" % (e.message))
 else:
 # Ensure that all 'exc_type_names' originate from one of
 # base exceptions, because those are the root exceptions that
 # python mandates/provides and anything else is invalid...
 causes = collections.deque([data])
 while causes:
 cause = causes.popleft()
 try:
 generated_on = cause['generated_on']
 ok_bases = cls.BASE_EXCEPTIONS[generated_on[0]]
 except (KeyError, IndexError):
 ok_bases = []
 root_exc_type = cause['exc_type_names'][-1]
 if root_exc_type not in ok_bases:
 raise InvalidFormat(
 "Failure data 'exc_type_names' must"
 " have an initial exception type that is one"
 " of %s types: '%s' is not one of those"
 " types" % (ok_bases, root_exc_type))
 sub_cause = cause.get('cause')
 if sub_cause is not None:
 causes.append(sub_cause)

 def _matches(self, other):
 if self is other:
 return True
 return (self.exception_type_names == other.exception_type_names and
 self.exception_args == other.exception_args and
 self.exception_kwargs == other.exception_kwargs and
 self.exception_str == other.exception_str and
 self.traceback_str == other.traceback_str and
 self.cause == other.cause and
 self.generated_on == other.generated_on)

[docs] def matches(self, other):
 """Checks if another object is equivalent to this object.

 :returns: checks if another object is equivalent to this object
 :rtype: boolean
 """
 if not isinstance(other, Failure):
 return False
 if self.exc_info is None or other.exc_info is None:
 return self._matches(other)
 else:
 return self == other

 def __eq__(self, other):
 if not isinstance(other, Failure):
 return NotImplemented
 return (self._matches(other) and
 utils.are_equal_exc_info_tuples(self.exc_info,
 other.exc_info))

 def __ne__(self, other):
 return not (self == other)

 # NOTE(imelnikov): obj.__hash__() should return same values for equal
 # objects, so we should redefine __hash__. Failure equality semantics
 # is a bit complicated, so for now we just mark Failure objects as
 # unhashable. See python docs on object.__hash__ for more info:
 # http://docs.python.org/2/reference/datamodel.html#object.__hash__
 __hash__ = None

 @property
 def exception(self):
 """Exception value, or ``None`` if exception value is not present.

 Exception value *may* be lost during serialization.
 """
 if self._exc_info:
 return self._exc_info[1]
 else:
 return None

 @property
 def generated_on(self):
 """Python major & minor version tuple this failure was generated on.

 May be ``None`` if not provided during creation (or after if lost).
 """
 return self._generated_on

 @property
 def exception_str(self):
 """String representation of exception."""
 return self._exception_str

 @property
 def exception_args(self):
 """Tuple of arguments given to the exception constructor."""
 return self._exc_args

 @property
 def exception_kwargs(self):
 """Dict of keyword arguments given to the exception constructor."""
 return self._exc_kwargs

 @property
 def exception_type_names(self):
 """Tuple of current exception type **names** (in MRO order)."""
 return self._exc_type_names

 @property
 def exc_info(self):
 """Exception info tuple or ``None``.

 See: https://docs.python.org/2/library/sys.html#sys.exc_info for what
 the contents of this tuple are (if none, then no contents can
 be examined).
 """
 return self._exc_info

 @property
 def traceback_str(self):
 """Exception traceback as string."""
 return self._traceback_str

 @staticmethod
[docs] def reraise_if_any(failures, cause_cls_finder=None):
 """Re-raise exceptions if argument is not empty.

 If argument is empty list/tuple/iterator, this method returns
 None. If argument is converted into a list with a
 single ``Failure`` object in it, that failure is reraised. Else, a
 :class:`~.WrappedFailure` exception is raised with the failure
 list as causes.
 """
 if not isinstance(failures, (list, tuple)):
 # Convert generators/other into a list...
 failures = list(failures)
 if len(failures) == 1:
 failures[0].reraise(cause_cls_finder=cause_cls_finder)
 elif len(failures) > 1:
 raise WrappedFailure(failures)

[docs] def reraise(self, cause_cls_finder=None):
 """Re-raise captured exception (possibly trying to recreate)."""
 if self._exc_info:
 six.reraise(*self._exc_info)
 else:
 # Attempt to regenerate the full chain (and then raise
 # from the root); without a traceback, oh well...
 root = None
 parent = None
 for cause in itertools.chain([self], self.iter_causes()):
 if cause_cls_finder is not None:
 cause_cls = cause_cls_finder(cause)
 else:
 cause_cls = None
 if cause_cls is None:
 # Unable to find where this cause came from, give up...
 raise WrappedFailure([self])
 exc = cause_cls(
 *cause.exception_args, **cause.exception_kwargs)
 # Saving this will ensure that if this same exception
 # is serialized again that we will extract the traceback
 # from it directly (thus proxying along the original
 # traceback as much as we can).
 exc.__traceback_str__ = cause.traceback_str
 if root is None:
 root = exc
 if parent is not None:
 parent.__cause__ = exc
 parent = exc
 six.reraise(type(root), root, tb=None)

[docs] def check(self, *exc_classes):
 """Check if any of ``exc_classes`` caused the failure.

 Arguments of this method can be exception types or type
 names (strings **fully qualified**). If captured exception is
 an instance of exception of given type, the corresponding argument
 is returned, otherwise ``None`` is returned.
 """
 for cls in exc_classes:
 cls_name = utils.cls_to_cls_name(cls)
 if cls_name in self._exc_type_names:
 return cls
 return None

 @property
 def cause(self):
 """Nested failure *cause* of this failure.

 This property is typically only useful on 3.x or newer versions
 of python as older versions do **not** have associated causes.

 Refer to :pep:`3134` and :pep:`409` and :pep:`415` for what
 this is examining to find failure causes.
 """
 return self._cause

 def __unicode__(self):
 return self.pformat()

[docs] def pformat(self, traceback=False):
 """Pretty formats the failure object into a string."""
 buf = six.StringIO()
 if not self._exc_type_names:
 buf.write('Failure: %s' % (self._exception_str))
 else:
 buf.write('Failure: %s: %s' % (self._exc_type_names[0],
 self._exception_str))
 if traceback:
 if self._traceback_str is not None:
 traceback_str = self._traceback_str.rstrip()
 else:
 traceback_str = None
 if traceback_str:
 buf.write(os.linesep)
 buf.write(traceback_str)
 else:
 buf.write(os.linesep)
 buf.write('Traceback not available.')
 return buf.getvalue()

[docs] def iter_causes(self):
 """Iterate over all causes."""
 curr = self._cause
 while curr is not None:
 yield curr
 curr = curr._cause

 def __getstate__(self):
 dct = self.to_dict()
 if self._exc_info:
 # Avoids 'TypeError: can't pickle traceback objects'
 dct['exc_info'] = self._exc_info[0:2]
 return dct

 def __setstate__(self, dct):
 self._exception_str = dct['exception_str']
 if 'exc_args' in dct:
 self._exc_args = tuple(dct['exc_args'])
 else:
 # Guess we got an older version somehow, before this
 # was added, so at that point just set to an empty tuple...
 self._exc_args = ()
 if 'exc_kwargs' in dct:
 self._exc_kwargs = dict(dct['exc_kwargs'])
 else:
 self._exc_kwargs = {}
 self._traceback_str = dct['traceback_str']
 self._exc_type_names = dct['exc_type_names']
 self._generated_on = dct['generated_on']
 if 'exc_info' in dct:
 # Tracebacks can't be serialized/deserialized, but since we
 # provide a traceback string (and more) this should be
 # acceptable...
 #
 # TODO(harlowja): in the future we could do something like
 # what the twisted people have done, see for example
 # twisted-13.0.0/twisted/python/failure.py#L89 for how they
 # created a fake traceback object...
 exc_info = list(dct['exc_info'])
 while len(exc_info) < 3:
 exc_info.append(None)
 self._exc_info = tuple(exc_info[0:3])
 else:
 self._exc_info = None
 cause = dct.get('cause')
 if cause is not None:
 cause = self.from_dict(cause)
 self._cause = cause

 @classmethod
 def _extract_cause(cls, exc_val):
 """Helper routine to extract nested cause (if any)."""
 # See: https://www.python.org/dev/peps/pep-3134/ for why/what
 # these are...
 #
 # '__cause__' attribute for explicitly chained exceptions
 # '__context__' attribute for implicitly chained exceptions
 # '__traceback__' attribute for the traceback
 #
 # See: https://www.python.org/dev/peps/pep-0415/ for why/what
 # the '__suppress_context__' is/means/implies...
 nested_exc_vals = []
 seen = [exc_val]
 while True:
 suppress_context = getattr(
 exc_val, '__suppress_context__', False)
 if suppress_context:
 attr_lookups = ['__cause__']
 else:
 attr_lookups = ['__cause__', '__context__']
 nested_exc_val = None
 for attr_name in attr_lookups:
 attr_val = getattr(exc_val, attr_name, None)
 if attr_val is None:
 continue
 nested_exc_val = attr_val
 if nested_exc_val is None or nested_exc_val in seen:
 break
 seen.append(nested_exc_val)
 nested_exc_vals.append(nested_exc_val)
 exc_val = nested_exc_val
 last_cause = None
 for exc_val in reversed(nested_exc_vals):
 f = cls.from_exception(exc_val, cause=last_cause,
 find_cause=False)
 last_cause = f
 return last_cause

 @classmethod
[docs] def from_dict(cls, data):
 """Converts this from a dictionary to a object."""
 data = dict(data)
 cause = data.get('cause')
 if cause is not None:
 data['cause'] = cls.from_dict(cause)
 return cls(**data)

[docs] def to_dict(self, include_args=True, include_kwargs=True):
 """Converts this object to a dictionary.

 :param include_args: boolean indicating whether to include the
 exception args in the output.
 :param include_kwargs: boolean indicating whether to include the
 exception kwargs in the output.
 """
 data = {
 'exception_str': self.exception_str,
 'traceback_str': self.traceback_str,
 'exc_type_names': self.exception_type_names,
 'exc_args': self.exception_args if include_args else tuple(),
 'exc_kwargs': self.exception_kwargs if include_kwargs else {},
 'generated_on': self.generated_on,
 }
 if self._cause is not None:
 data['cause'] = self._cause.to_dict(include_args=include_args,
 include_kwargs=include_kwargs)
 return data

[docs] def copy(self, deep=False):
 """Copies this object (shallow or deep).

 :param deep: boolean indicating whether to do a deep copy (or a
 shallow copy).
 """
 cause = self._cause
 if cause is not None:
 cause = cause.copy(deep=deep)
 exc_info = utils.copy_exc_info(self.exc_info, deep=deep)
 exc_args = self.exception_args
 exc_kwargs = self.exception_kwargs
 if deep:
 exc_args = copy.deepcopy(exc_args)
 exc_kwargs = copy.deepcopy(exc_kwargs)
 else:
 exc_args = tuple(exc_args)
 exc_kwargs = exc_kwargs.copy()
 # These are just simple int/strings, so deep copy doesn't really
 # matter/apply here (as they are immutable anyway).
 exc_type_names = tuple(self._exc_type_names)
 generated_on = self._generated_on
 if generated_on:
 generated_on = tuple(generated_on)
 # NOTE(harlowja): use `self.__class__` here so that we can work
 # with subclasses (assuming anyone makes one).
 return self.__class__(exc_info=exc_info,
 exception_str=self.exception_str,
 traceback_str=self.traceback_str,
 exc_args=exc_args,
 exc_kwargs=exc_kwargs,
 exc_type_names=exc_type_names,
 cause=cause, generated_on=generated_on)

 © Copyright 2017, OpenStack Foundation.
 Last updated on 'Tue Jan 17 02:28:50 2017, commit 9ea9a46'.
 Created using Sphinx 1.3.5.

_static/down.png

_static/up.png

search.html

 Navigation

 		
 index

 		Failure documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2017, OpenStack Foundation.
 Last updated on 'Tue Jan 17 02:28:50 2017, commit 9ea9a46'.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/comment.png

_static/plus.png

_static/down-pressed.png

_modules/index.html

 Navigation

 		
 index

 		Failure documentation »

 All modules for which code is available

		failure.failure

 © Copyright 2017, OpenStack Foundation.
 Last updated on 'Tue Jan 17 02:28:50 2017, commit 9ea9a46'.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

